Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Michael Karas,^a Isabelle Fournier^a and Michael Bolte^{b*}

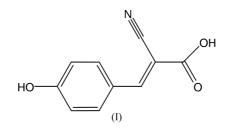
^aInstitut für Pharmazeutische Chemie, Instrumentelle Analytische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Str. 9-11, 60439 Frankfurt/Main, Germany, and ^bInstitut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Str. 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

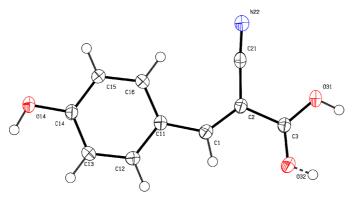
Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.001 Å Disorder in main residue R factor = 0.032 wR factor = 0.093 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


The title compound, $C_{10}H_7NO_3$, has an almost planar molecule, forming hydrogen-bonded dimers *via* the carboxyl groups. These dimers are further connected by hydrogen bonds between the hydroxy groups of the benzene rings and the cyano N atoms into ribbons, which are arranged in layers. The H atom of the carboxyl group is disordered over two sites.

2-Cyano-3-(4-hydroxyphenyl)acrylic acid

Received 11 January 2005 Accepted 14 January 2005 Online 22 January 2005


Comment

The title compound (Fig. 1) has an almost planar molecule (the r.m.s. deviation for all non-H atoms is 0.053 Å). Two molecules form centrosymmetric hydrogen-bonded dimers *via* the carboxyl groups. These dimers are further connected into ribbons (Fig. 2) *via* hydrogen bonds between the hydroxy groups on the benzene rings and the cyano N atoms. These ribbons are arranged into layers perpendicular to [103] so that a two-dimensional structure is formed (Fig. 3). The interplanar distance is 3.12 Å.

Experimental

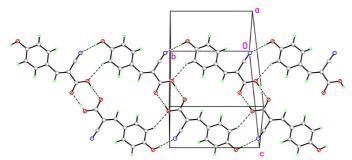
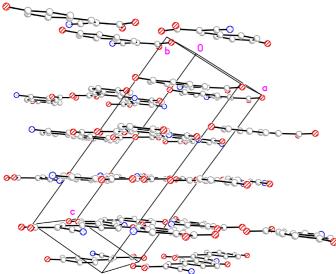

The title compound was prepared according to the procedure described by Karchgaudhuri *et al.* (2002).

Figure 1


Perspective view of the title compound, with the atom numbering; displacement ellipsoids are shown at the 50% probability level. The bond of the disordered H atom with the minor site occupation factor is drawn with a broken line.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

Packing diagram. View along [103]; only the major occupied site of the disordered hydroxy H atom is shown. Hydrogen bonding is indicated by broken lines.

Figure 3

Packing diagram. View approximately on to the ac plane. H atoms have been omitted.

Crystal data

	2
$C_{10}H_7NO_3$	$D_x = 1.473 \text{ Mg m}^{-3}$
$M_r = 189.17$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 508 reflections
a = 5.8182 (5) Å	$\theta = 3.4-20.9^{\circ}$
b = 9.5061 (7) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 15.461 (1) Å	T = 173 (2) K
$\beta = 93.890 \ (6)^{\circ}$	Block, yellow
V = 853.15 (11) Å ³	$0.52 \times 0.48 \times 0.32 \text{ mm}$
Z = 4	
Data collection	
Siemens SMART CCD	1798 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.021$
ω scans	$\theta_{\rm max} = 28.7^{\circ}$
Absorption correction: none	$h = -7 \rightarrow 7$

Absorption correction: none 12 012 measured reflections 1986 independent reflections

 $k = -12 \rightarrow 11$ $l = -20 \rightarrow 20$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + ($
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 0.1987P]
$wR(F^2) = 0.093$	where $P = (F_o^2)^2$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
1986 reflections	$\Delta \rho_{\text{max}} = 0.33 \text{ e Å}$
140 parameters	$\Delta \rho_{\rm min} = -0.20 \ {\rm e}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1 Selected bond lengths (Å).

C1-C2	1.3551 (14)	C21-N22	1.1503 (14)
C2-C21	1.4309 (13)	C3-O32	1.2510 (12)
C2-C3	1.4831 (12)	C3-O31	1.2842 (13)

 $+ (0.0546P)^2$

-3

еÅ

 $+ 2F_{c}^{2})/3$

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O14 - H14 \cdots N22^{i} \\ O31 - H31 \cdots O32^{ii} \\ O32 - H32 \cdots O31^{ii} \end{array}$	0.910 (17)	1.934 (17)	2.8435 (12)	177.2 (15)
	0.81 (3)	1.79 (3)	2.5967 (10)	176 (2)
	0.83 (6)	1.77 (6)	2.5967 (10)	173 (4)

Symmetry codes: (i) x, y + 1, z; (ii) -x, -y, -z + 1.

All H atoms were found in a difference map. Those bonded to C atoms were refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C)]$ using a riding model with $C_{aromatic} - H = 0.95$ Å, H atoms bonded to O atoms were refined freely. The H atom of the carboxyl group is disordered over two sites. The ratio of the site occupation factors of the disordered H atoms refined to 0.63 (5)/ 0.37 (5).

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and XP in SHELXTL (Sheldrick, 1991); software used to prepare material for publication: SHELXL97 and PLATON.

References

Karchgaudhuri, N., De, A. & Mitra, A. K. (2002). J. Chem. Res. pp. 180-183.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.